//= vietedu::getAssetVersion()?>
Ôn thi giữa kỳ mà còn được rinh tỷ quà cực chất từ VUIHOC. Còn chần chừ gì nữa mà không tham gia ngay thôi!
Nội dung bài viết giới thiệu tới các em học sinh các phương pháp giải các bài tập tìm tập nghiệm của bất phương trình mũ. Cùng Vuihoc điểm danh những dạng bài cơ bản và cách xử trí nhanh gọn đối với từng dạng bài nhé!
Làm sao để giải bất phương trình mũ khác cơ số hóc búa? Phương pháp giải nào phù hợp và nhanh nhất? Có những lưu ý gì đối với từng dạng bài bất phương trình mũ khác cơ số? Cùng Vuihoc giải đáp tất cả những thắc mắc về bất phương trình mũ khác cơ số và cùng học cách giải dạng toán được cho là “kiếm điểm 8+” này nhé!
Giải bất phương trình logarit khác cơ số là “thử thách” không hề nhỏ đối với học sinh THPT, đặc biệt là các bạn 2k4 chuẩn bị bước vào giai đoạn ôn thi THPT Quốc gia. Để giúp các bạn học sinh thêm thành thạo, Vuihoc xin chia sẻ các dạng bài tập giải bất phương trình logarit khác cơ số cùng ví dụ cực dễ hiểu và bài tập áp dụng.
Làm thế nào để giải bất phương trình mũ và logarit nhanh nhất, đúng nhất? Bất phương trình mũ và logarit có những dạng bài tập nào? Tất cả những thắc mắc này sẽ được giải đáp qua bài viết dưới đây: Chi tiết các cách giải bất phương trình mũ và logarit cực dễ hiểu
Có bao nhiêu cách tìm tập nghiệm của phương trình Logarit? Giải các bài tập về phương trình Logarit như thế nào?... Đây là những câu hỏi phổ biến được các bạn học sinh THPT quan tâm, đặc biệt là các sĩ tử 2k4 ôn thi THPT Quốc gia. Bài viết dưới đây của VUIHOC sẽ giúp các bạn trả lời những câu hỏi đó.
Bất phương trình mũ là phần kiến thức rất quan trọng trong chương trình học Phổ thông, đặc biệt là ôn thi THPT Quốc Gia. Mở giấy viết ra và cùng học 4 cách giải bất phương trình mũ siêu nhanh siêu dễ với Vuihoc ngay sau đây.
Khi học về bài toán liên quan đến Logarit, phương pháp giải bất phương trình Logarit bằng máy tính được coi là cách nhanh chóng, chính xác và tối ưu nhất đáp ứng yêu cầu giải toán trắc nghiệm trong các kỳ thi THPT Quốc Gia. Cùng Vuihoc tham khảo bài viết sau để biết cách giải bất phương trình logarit bằng máy tính nhé!